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a b s t r a c t

Multiple Criteria Decision Analysis methods, such as ELECTRE, PROMETEE, AHP, TOPSIS, VIKOR, have been

applied to solving numerous real-life decision making problems in business and management. However,

the mechanics of those methods is not easily understandable and it is often seen by users without much

formal training as a kind of “scientific witchcraft”.

In order to make those popular MCDA methods more transparent, we provide a simple framework for

interpretations of rankings they produce. The framework builds on the classical results of MCDA, in par-

ticular on the preference capture mechanism proposed by Zionts and Wallenius in seventies of the last

century, based on Simple Additive Weighting.

The essence and the potential impact of our contribution is that given a ranking produced by a MCDM

method, we show how to derive weights for the Simple Additive Weighting which yield the same rank-

ing as the given method. In that way we establish a common framework for almost no–cost posterior

analysis, interpretation and comparison of rankings produced by MCDA methods in the expert systems

environment. We show the working of the concept taking the TOPSIS method in focus, but it applies in

the same way to any other MCDM method.

We illustrate our reasoning with numerical examples taken from literature.

© 2016 Published by Elsevier Ltd.

1. Introduction1

Multiple Criteria Decision Analysis (MCDA) is a topic well repre-2

sented in the field of expert systems; many of them employ MCDA3

for solving complex problems of decision making (see Alemi-4

Ardakani, Milani, Yannacopoulos, & Shokouhi, 2016; Mardani, Ju-5

soh, & Zavadskas, 2015; Östermark & Salmela, 1988; Ozernoy,6

1988).7

Solving an MCDA problem is usually understood as determining8

an alternative (a decision variant) which corresponds to the best,9

in the decision maker’s opinion, combination of (at least two) cri-10

teria values, or in a broader sense, as ranking alternatives from the11

best (in the above meaning) to the worst one. Because attaining12

the maximal values with respect to all criteria simultaneously, in13

general, impossible, solving an MCDA problem requires that some14

information on preferred combinations of criteria values (so called15

preference information) has to be articulated by the decision maker16

(DM).17
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The representative and the most popular methods of MCDA 18

within the expert systems domain are ELECTRE (Roy, 1968), 19

PROMETHEE (Brans & Vincke, 1985), AHP (Saaty, 1990), TOPSIS 20

(Hwang & Yoon, 1981), VIKOR (Opricovic & Tzeng, 2004), see e.g. 21

Özcan, Çelebi, and Esnaf 2011; Tsou 2008. In the MCDA methods, 22

preference information, coming from the DM, is fed into some se- 23

lection mechanism and then this mechanism, representing (or just 24

usurping to represent) the DM’s preference model, is used to de- 25

rive the preferred ranking.1 Although the DM is free in provid- 26

ing preference information, the resulting ranking is conditioned 27

not only by the DM’s preferences but also by the properties of 28

the method mechanism. Then the following question arises: Does a 29

MCDA method mechanisms represent correctly the DM’s preferences? 30

Due to its conceptual and implementation simplicity, the MCDA 31

methods are available to a wide range of practitioners who are 32

not necessary experts in MCDA and thus they cannot answer ques- 33

tions of that sort by themselves, neither a priori nor a posteriori. 34

1 Thus, according to the taxonomy given by Miettinen (1999) these methods be-

long to the class of methods with a priori articulation of preference information,

where methods with a posteriori and interactive articulation constitute the two

other classes.
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However, there is a lack of a methodology which would enable to35

understand and interpret the results of all those methods in a uni-36

form way. The mechanics of the MCDA methods, such as ELECTRE,37

PROMETEE, AHP, TOPSIS or VICKOR, are not easily interpretable and38

therefore their working can be seen by users without much formal39

training as a kind of “scientific witchcraft”.40

So in order to make the MCDA methods more transparent, we41

propose the firmly established and with no doubt the most widely42

known Single Average Weighting method to play the role of a43

metamodel. We show how to interpret the MCDA methods in the44

terms of the metamodel. We build the interpretation on the classi-45

cal results of MCDA, namely on the preference capture mechanism46

– the Simple Additive Weighting (SAW) – proposed by Zionts and47

Wallenius (1983). The framework we propose can help to reinter-48

pret and thus to demystify the results an MCDA method provides.49

We show its working using the TOPSIS method as an example, but50

ELECTRE, PROMETEE, AHP, VIKOR, and virtually any MCDA method,51

can be interpreted and reinterpreted in the analogous way.52

There have been studies concerning significance, derivation and53

interpretation of weights in MCDA. For example, Alemi-Ardakani54

et al. (2016) analyzed how different subjective and objective55

weighting methods capture preferences in terms of ranking of al-56

ternatives. For other studies one can point to the works of Deng,57

Yeh, and Willis (2000); Figueira and Roy (2002); Kung and Wen58

(2007); Olson (2004); Rogers and Bruen (1998). All those stud-59

ies concentrate on theoretical analysis of weighting and providing60

general recommendations. The novelty of our approach is twofold.61

First, it falls into the reverse engineering paradigm (Kaliszewski,62

2016), where starting from a ranking of alternatives, the set of63

weight resulting in such a ranking is derived. Second, our approach64

provides a practical tool which can be applied to any real–life de-65

cision making problem, whatever MCDA method was used. Indeed,66

as shown below, the input of our approach is just the ranking pro-67

duced by a MCDA method.68

This paper is organized as follows. In the next section we recall69

the TOPSIS method formulation.70

In Section 3, we point to some elements in the TOPSIS method71

which seem lacking a methodological basis and are arbitrary.72

In Section 4 we propose a simple explanatory framework to in-73

terpret the rankings the method provides an easy terms of linear74

weighting functions, in other words, in terms of SAW.75

To illustrate our concept, in Section 5 we solve the numerical76

problem, given in the original paper by Hwang and Yoon, by the77

TOPSIS method and we interpret the resulting ranking in terms of78

that framework. Section 6 concludes.79

2. The TOPSIS method80

TOPSIS, a ranking method in the field of Multiple Criteria Deci-81

sion Analysis (MCDA), was developed by Chen and Hwang (1992);82

Hwang and Yoon (1981). It has become very popular among prac-83

titioners, first in Asia-Pacific region and then across the world. In84

the paper (Behzadian, Otaghsara, Yazdani, & Ignatius, 2012) 26685

journal papers are collected, published since 2000 on TOPSIS ap-86

plications in such areas as Supply Chain Management; Engineer-87

ing Design, Engineering and Manufacturing Systems; Business and88

Marketing Management, and others. TOPSIS has been also ex-89

tended for group decision making (for a survey of works in that90

directions see e.g. Huang & Li, 2012).91

In the TOPSIS method, preference information, coming from the92

DM in the form of criteria weights, is fed into a parametric func-93

tion (the TOPSIS valuation function) and then this function, repre-94

senting the DM’s preference model, is used to derive the preferred95

ranking. Although the DM is free in providing preference informa-96

tion — weights, the resulting ranking is conditioned not only by97

weights but also by the properties of the TOPSIS valuation func-98

tion. Then the following question arises: Does the TOPSIS valuation 99

function represent correctly the DM’s preferences? 100

The MCDA problem the TOPSIS method can handle is framed 101

as follows. Given are the decision matrix D = {di j}, with the alter- 102

natives Ai , i = 1, . . ., m , (rows), and the criteria Xj , j = 1, . . ., k , 103

(columns). To simplify the presentation but without loss of gen- 104

erality, we assume that all criteria are of the type “the more the 105

better”. 106

The TOPSIS method ranks alternatives from the “best” to 107

“worst” and to do that it uses solely criteria values and criteria 108

weights w j , j = 1, . . ., k , which are given by the DM. 109

To work with comparable magnitudes of numbers, the first step 110

in TOPSIS is to normalize criteria values. The issue of normalization 111

in TOPSIS is well covered in the literature (see e.g. Milani 2005 ) Q3
112

and therefore we skip that topic here. Below we shall use the nor- 113

malization with the Euclidean norm, by Hwang and Yoon (1981). 114

The TOPSIS method consists of the following steps. 115

1. Given the decision matrix D, calculate the normalized deci- 116

sion matrix R = {ri j} , 117

ri j = di j/

√∑
i d2

i j
, i = 1, . . ., m , j = 1, . . ., k . 118

2. Calculate the weighted decision matrix V = {vi j}, 119

vi j = w jri j , i = 1, . . ., m , j = 1, . . ., k . 120

3. Determine the ideal solution A∗ and the negative-ideal solu- 121

tion A− , 122

A∗
j
= maxi vi j , j = 1, . . ., k , A−

j
= mini vi j, j = 1, . . ., k . 123

4. For each alternative i = 1, . . ., m , calculate the separation 124

measures S∗
i

and S−
i

, 125

S∗
i

=
√∑

j(vi j − A∗
j
)2 , S−

i
=

√∑
j(vi j − A−

j
)2 . 126

5. For each alternative i = 1, . . ., m , calculate the relative close- 127

ness Ci to the ideal solution, 128

Ci = S−
i
/(S−

i
+ S∗

i
). 129

6. Rank alternatives with the descending order of Ci . 130

In the next section we address the TOPSIS–specific weight me- 131

chanics and rank reversal issues. 132

3. TOPSIS mysteries 133

Let a = (a1, a2, . . ., ak) denote any point of the box A defined by 134

A∗
j

and A−
j

, j = 1, . . ., k. 135

From the description of the TOPSIS method it follows that the 136

TOPSIS preference model consists of weight–dependent valuation 137

function Ca, 138

Ca = S−
a

S−
a + Sa∗

(see Step 5 in the TOPSIS description in the previous section), and 139

weights w j, j = 1, . . ., k, given by the DM. Because of the specific 140

form of the valuation function Ca its usage raises some concern 141

and calls for the utmost consciousness. 142

Any ranking process consists of two parts: the cognitive part— 143

elicitation of the preference model — and the technical part— 144

calculation of the ranking. TOPSIS realizes just the technical part 145

of the ranking process, taking weighs w j and decision matrix D as 146

the input. In other words, in TOPSIS the cognitive part is absent. 147

The main concern in TOPSIS is about how is the input (weights) 148

related to output (the resulting ranking)? 149

As can be seen from the description given above, in TOPSIS 150

weights do not weight criteria directly. Indeed, in the separation 151

measures S∗
a and S−

a one has 152

S∗
a =

√∑
j

w2
j
(aj − A∗

j
)2 ,
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Fig. 1. Contour plot (left) and 3D plot (right) of function Ca for A∗
j
= 1, A−

j
= 0, j = 1, . . ., k, w1 = 2, w2 = 1.

and153

S−
a =

√∑
j

w2
j
(aj − A−

j
)2 .

Here the role and purpose of weights is far from being intuitive.154

For example, Fig. 1 presents contours of Ca for the case w1 =155

2, w2 = 1, where for the sake of simplicity A∗
i

= 1, A− = 0, i =156

1, . . ., k. The middle contour is linear and corresponds to the line157

4a1 + a2 = b, where b is a constant. In other words, along this158

contour alternatives are valuated as in the weighted sum function159

w1a1 + w2a2 with w1 = 4, w2 = 1, not necessarily to the DM in-160

tention and definitely behind its conscious choice.161

One may ask why not to apply weights directly to the decision162

matrix D to get matrix V ′ = {v′
i j
}, where v′

i j
= widi j, and only then163

n ′164

n165

166

v167

n168

a169

t170

c171

d172

173

t174

g175

D176

177

e178

t179

4180

181

t182

r183

method as A1 � · · · � Am, with the first alternative A1 and no two 184

alternatives having the same rank. Below, in a numerical example 185

we consider the case where the TOPSIS ranking is equivocal. 186

One can ask: do there exist weights of the weighted linear func- 187

tion (as in the Simple Additive Weighting approach) over normal- 188

ized values of k criteria, 189

w1r∗,1 + · · · + wkr∗,k , (1)

which guarantee the same ranking (resulting from sorting the al- 190

ternatives Ai in the descending order of the value of this function) 191

as in TOPSIS? If yes, what they are? If not, are there other func- 192

tions which guarantee the same ranking as in TOPSIS? 193

To guarantee ranking A1 � · · · � Am , weights have to satisfy the 194

following system of (m − 1) + k linear inequalities and 1 equation 195

196

T 197

0 198

a 199

a 200

201

n 202

m 203

204

nonempty and not a singleton, then there is an infinite number 205
ormalize matrix V . However, such an action would result in the

on–weighted normalized decision matrix R, since

v′
i j√∑

i(v′
i j
)2

= widi j√∑
i(widi j)2

= di j√∑
i(di j)2

= ri j.

So application of weights to the normalized matrix R is the only

iable option. But this action results in matrix V whose column

orms are not, in general, equal to one. Norm values in matrix V

re now equal to weights, which is the immediate result of mul-

iplying a normalized vector by a scalar (here weight). As weights

an easily differ by the factor of 10, the original idea to work with

ata of the same magnitude is clearly lost.

Finding no hints in the TOPSIS method for its easy interpreta-

ions, below we proposes a simple explanatory framework which,

iven the ranking resulting from the TOPSIS method, can help the

M to understand and eventually accept or discard that ranking.

Although our starting point was the TOPSIS method, from the
xposition given below it is quite clear that our arguments apply

o any MCDA method, with TOPSIS serving as an example.

. TOPSIS demystified

To simplify the presentation and without loss of generality, in

his section we assume that m alternatives Ai, i = 1, . . ., m, rep-

esented by the normalized matrix R, are ranked by the TOPSIS

o

t

e

g

i
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k∑
j=1

wjri j ≥
k∑

j=1

wjri+1, j , i = 1, . . ., m − 1 ,

wj ≥ 0 , j = 1, . . ., k ,
k∑

j=1

wj = 1 .

(2)

he last constraint is imposed to avoid the trivial solution w j =
, j = 1, . . ., k. Actually, instead of 1 as the right hand side value

ny positive number can be used here, but putting 1 is customary

nd convenient.

The above condition is the immediate consequence of the origi-

al idea of Zionts and Wallenius to capture the DM’s preference by

eans of weights of function (1) (cf. Zionts & Wallenius, 1983).

Let us denote the set of weights satisfying (2) by W. If W is
f weight vectors which under the weighted linear function yield 206

he same ranking as the TOPSIS ranking. In other words, for any 207

lement from set W, TOPSIS and SAW produce the same ranking. 208

Example 1 - the set W contains an infinite number of elements. 209

Consider the ranking problem with matrix D and weights as 210

iven in Table 1. 211

The TOPSIS method produces the following (unequivocal) rank- 212

ng: A2 � A3 � A4 � A1 . 213

e weighting—A metamodel for multiple criteria decision analysis

.1016/j.eswa.2016.01.042

http://dx.doi.org/10.1016/j.eswa.2016.01.042


4 I. Kaliszewski, D. Podkopaev / Expert Systems With Applications xxx (2016) xxx–xxx

ARTICLE IN PRESS
JID: ESWA [m5G;February 4, 2016;21:53]

214

215

216217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

a 234

235

n 236

237

t 238

239

I 240

241

242

r 243

C 244

e 245

246

t 247

a 248

D 249

a 250

251

t 252

253

254

w 255

256

w 257

t 258

r

p

s

Table 1

Example 1 – the deci-

sion matrix D and the

(TOPSIS) weights.

X1 X2

A1 2.0 1500

A2 2.5 2700

A3 1.8 2000

A4 2.2 1800

wi 0.5 0.5

Fig. 2. The set W in Example 1 (the thick line segment of w1 + w2 = 1); wmm de-

notes the middle most element of W, as explained at the end of this Section.

In this problem set W is defined by the following set of 5 linear
inequalities and 1 equation.

w1 0.5839 + w2 0.6591 ≥ w1 0.4204 + w2 0.4882 (which stands for A2 � A3) ,

w1 0.4204 + w2 0.4882 ≥ w1 0.5139 + w2 0.4394 (which stands for A3 � A4) ,

w1 0.5139 + w2 0.4394 ≥ w1 0.4671 + w2 0.3662 (which stands for A4 � A1) ,

w1 ≥ 0 ,

w2 ≥ 0 ,

w1 + w2 = 1 .

(3)

After regrouping the terms we have

w1 0.1635 + w2 0.1709 ≥ 0 ,

− w1 0.0935 + w2 0.0488 ≥ 0 ,

w1 0.0468 + w2 0.0732 ≥ 0 ,

w1 ≥ 0 ,

w2 ≥ 0 ,

w1 + w2 = 1 .

(4)

Putting w1 = 1 − w2 we have

0.6571 ≤ w2 ≤ 1 , (5)

and from this we obtain

0 ≤ w1 ≤ 0.3429 . (6)

The set W for this Example is represented in Fig. 2.

End of example 1

Example 2 - the set W is empty.

Consider the ranking problem with matrix D and weights as

given in Table 2.

The TOPSIS method produces the following (equivocal) ranking:

A3 � A1 ≡ A2 � A4 , where A1 ≡ A2 denotes that A1 and A2 are

ranked analogously (as second in the ranking).
In this problem, set W is defined by the following set of 6 linear

inequalities and 1 equation (we do not require the condition A1 ≡
A2 to hold).

w1 0.5268 + w2 0.5268 ≥ w1 0.3710 + w2 0.7419 (which stands for A3 � A1) ,

w1 0.5268 + w2 0.5268 ≥ w1 0.7419 + w2 0.3710 (which stands for A3 � A2) ,

w1 0.3710 + w2 0.7419 ≥ w1 0.1855 + w2 0.1855 (which stands for A1 � A4) ,

w1 0.7419 + w2 0.3710 ≥ w1 0.1855 + w2 0.1855 (which stands for A2 � A4) ,

w1 ≥ 0 ,

w2 ≥ 0 ,

w1 + w2 = 1 .

(7)
Please cite this article as: I. Kaliszewski, D. Podkopaev, Simple additiv
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Table 2

Example 2 – the decision matrix D and

the (TOPSIS) weights.

X1 X2

A1 0.5 1.0

A2 1.0 0.5

A3 0.71 0.71

A4 0.25 0.25

wi 0.5 0.5

After regrouping the terms we have

w1 0.1558 − w2 0.2151 ≥ 0 ,

− w1 0.2151 + w2 0.1558 ≥ 0 ,

w1 0.1855 + w2 0.5564 ≥ 0 ,

w1 0.5564 + w2 0.1855 ≥ 0 ,

w1 ≥ 0 ,

w2 ≥ 0 ,

w1 + w2 = 1 .

(8)

Putting w1 = 1 − w2 we have

0 ≤ w2 ≤ 0.4201 ,

0.5799 ≤ w2 ≤ 1 .
(9)

nd as these conditions are inconsistent, hence W is empty.

However, using the quadratic weighted function over an alter-

ative criteria values

(w1r∗,1)
2 + · · · + (wkr∗,k)

2 , (10)

and solving the following set of 6 linear inequalities and 1 equa-
ion (we do not require the condition A1 ≡ A2 to hold)

(w1 0.5268)2 + (w2 0.5268)2 ≥ (w1 0.3710)2 + (w2 0.7419)2 (which stands for A3 � A1) ,

(w1 0.5268)2 + (w2 0.5268)2 ≥ (w1 0.7419)2 + (w2 0.3710)2 (which stands for A3 � A2) ,

(w1 0.3710)2 + (w2 0.7419)2 ≥ (w1 0.1855)2 + (w2 0.1855)2 (which stands for A1 � A4) ,

(w1 0.7419)2 + (w2 0.3710)2 ≥ (w1 0.1855)2 + (w2 0.1855)2 (which stands for A2 � A4) ,
w1 ≥ 0 ,
w2 ≥ 0 ,

w1 + w2 = 1 ,

(11)

one gets feasible weights, for example w1 = 0.0400, w2 = 0.9600.

n other words, the above system of conditions is consistent.

End of example 2

Example 2 shows that one can attempt to explain the TOPSIS

ankings also by other functions than the linear weighted function.

learly though, the linear weighted function is the simplest and

asiest to use and interpret.

If the number of weights in W is infinite, whatever is the func-

ion used to explain the TOPSIS rankings, the DM may need some

ssistance in analyzing and understanding set W. For example the

M can ask a series of questions about the ranges of weight vari-

tions preserving the TOPSIS ranking.

Here are examples of such questions, all pertaining to preserva-

ion of the TOPSIS ranking.

1. What is the range of individual weight variations?

2. Taking the weights as in the TOPSIS ranking, what are other

eight contributions preserving the TOPSIS ranking?

3. What weights are the middle most, where the middle most

eights are defined as an element of W the distance from which

o all boundaries of W is the greatest?2 3

2 The middle most weights offer the greatest stability of the TOPSIS ranking with

espect to possible weight perturbations within the SAW model.
3 The middle most weight can be found by solving the following optimization

roblem

max t∑k
j=1 wj(ri j − ri+1, j ) ≥ t , i = 1, . . ., m − 1 ,

wj ≥ t , j = 1, . . ., k .

(12)

ee Chmielewski and Kaliszewski (2011).
e weighting—A metamodel for multiple criteria decision analysis

.1016/j.eswa.2016.01.042
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Table 3

Hwang and Yoon problem – the decision matrix D and

the (TOPSIS) weights.

X1 X2 X3 X4 X5 X6

A1 2.0 1500 20000 -5.5 5 9

A2 2.5 2700 18000 -6.5 3 5

A3 1.8 2000 21000 -4.5 7 7

A4 2.2 1800 20000 -5.0 5 5

wi 0.2 0.1 0.1 -0.1 0.2 0.3

4. Do TOPSIS weights preserve the TOPSIS ranking when applied259

to the linear function?260

5. Do equal weights preserve the TOPSIS ranking?261

There can be cases in which one can only ask about weights262

which preserve a part of the TOPSIS ranking, e.g. only at a few263

first positions or just preserve the first position. In such cases the264

set of inequalities (2) should be reduced accordingly.265

5. Hwang and Yoon example266

We shall illustrate our argument by the problem presented by267

Hwang and Yoon in their original exposition of TOPSIS (Hwang &268

Y269

270

271

i272

273

t274

275

c276

m277

s

a

formation necessary for ranking. Other conclusions can be drawn 278

from comparison of TOPSIS weights and maximum weights. For 279

example, it is possible to assign the third criterion as big weight 280

as 0.855 having the same ranking as TOPSIS yields in the case of 281

this weight equal to 0.1. Analyzing lines from 13th to 19th, the DM 282

can grasp an idea about coefficients of substitutions among crite- 283

ria, which can be used for justifying the decision. 284

6. Concluding remarks

The MCDA methods are widely used in expert systems litera-  
ture but they lack transparency of their decision rules. By lack of  
transparency we mean that their working escapes an easy grasp  by 
non–specialists, individuals from outside of the decision making  
domain. And the transparency of decision making/decision support  
expert systems is absolutely indispensable if they are to become 

practical tools assisting real DMs in their daily tasks.

Ranking by MCDA methods is, as a rule, one–iteration pro-  
cess. This does not conform well with nowadays broadly accepted 
2paradigm that decision processes are by their very nature interac-  
tive (Simon, 1977; for interactive ranking model building and inter-  
active ranking selection see Chmielewski & Kaliszewski, 2011). In  
one–iteration processes the DM has no chance to learn about the  
interplay of criteria by observing the results of his trial decisions.  On 
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oon, 1981); the results are given in Table 4.

The decision matrix D and the weights are given in Table 3.4

The TOPSIS method produces the following (unequivocal) rank-

ng: A1 � A3 � A4 � A2.

Calculations for Table 4 were done in Excel add–in Solver, with

he LP simplex as the solving method.

Analyzing Table 4, the DM may note for example that for all

riteria excluding the sixth one, minimum weights are zero. This

eans that any of these criteria can be ignored without losing in-

4 Since the fourth criterion was of the type “the less the better”, to satisfy our as-

umption that all criteria are of the type “the more the better”, we were to multiply

ll the values of that criterion by −1.

Table 4

Hwang and Yoon problem – the analysis of the TO

selection of weights in calculations for line 13, w2 wa

Question no. w1

1 1 min w1 0.000

2 1 max w1 0.657

3 1 min w2 0.000

4 1 max w2 0.000

5 1 min w3 0.000

6 1 max w3 0.000

7 1 min w4 0.000

8 1 max w4 0.000

9 1 min w5 0.000

10 1 max w5 0.000

11 1 min w6 0.254

12 1 max w6 0.000

13 2 w1 as for TOPSIS 0.200

14 2 w2 as for TOPSIS 0.372

15 2 w3 as for TOPSIS 0.600

16 2 w4 as for TOPSIS 0.605

17 2 w5 as for TOPSIS 0.632

18 2 w6 as for TOPSIS 0.513

19 3 mid. most wi 0.040

20 4 all wi as for TOPSIS

21 5 all wi = 0, 1667
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the contrary, his/her preferences, not necessary sharp and def- 3

inite, are irrevocably applied to a decision selection mechanism.

The rigid and somewhat obscure (to non–specialists) framewor

CDA methods can be relaxed a bit by adding to each of them a 
f posterior analysis, leaving however the use of those meth- 

ntact, as proposed in this paper. Irrespective of the M

ethod selected, SAW, as we proposed the use of it in the p

ffers a level ground to interpret and compare (if more than

ethod has been selected to do the job) the results – rankin

lternatives. By our development we allow the DM to interpre

CDA method–produced rankings in the much simpler terms 
he original MCDA methods allow, in the almost natural language

AW (SAW belongs nowadays to the folklore of the domains of 

anking by the linear weighting function. To enable

imized, whereas for lines 14–18, w1 was maximized.

w2 w3 w4 w5 w6

0.0000 0.0000 0.0000 0.0000 1.0000

0.0000 0.0000 0.0000 0.2394 0.1030

0.0000 0.1236 0.4677 0.0431 0.3657

0.2277 0.0000 0.3620 0.0000 0.4103

0.2277 0.0000 0.3620 0.0000 0.4103

0.0000 0.8550 0.0000 0.0000 0.1450

0.0000 0.8550 0.0000 0.0000 0.1450

0.0000 0.0000 0.6180 0.0000 0.3820

0.0000 0.0000 0.6180 0.0000 0.3820

0.0000 0.0000 0.0000 0.4365 0.5635

0.0000 0.7056 0.0000 0.0000 0.0399

0.0000 0.0000 0.0000 0.0000 1.0000

0.1591 0.0000 0.3543 0.0000 0.2866

0.1000 0.0000 0.3476 0.0000 0.1801

0.0000 0.1000 0.0000 0.2055 0.0941

0.0000 0.0000 0.1000 0.1845 0.1103

0.0000 0.0000 0.0422 0.2000 0.1252

0.0000 0.0000 0.0000 0.1868 0.3000

0.0401 0.0401 0.3038 0.0401 0.5358

Ranking A4, A3, A2, A1.

Ranking A4, A3, A2, A1.
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decision making and expert systems, and hardly needs much ex-313

planation).314

It is noteworthy to observe that the set W produced in our ap-315

proach can be interpreted as an archive of weights, all of them316

leading to the same ranking. Such archives can serve for a kind317

of knowledge discovery about the interplay of weights and criteria318

with a significantly simpler preference model than that offered by319

MCDA methods. Moreover, such archives can be a spring off point320

to relate MCDA methodologies to other decision making concepts321

as case–based reasoning (see e.g. Bergmann et al., 2003) or multi–322

step (iterative) decision processes (in the sense of Simon, 1977).323
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Appendix328

We repeat calculations as for Hwang and Yoon example in329

Section 5 for the problem taken from the work of Goh, Tung, and330

Cheng (1996); the results are given in Table 6. This problem in the331

original paper was not solved by TOPSIS but by the other method.332

As before, weight related calculations were done in Excel add–333

in Solver, with the LP simplex as the solving method.334

335

336

337
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